Energy-Efficient Methods for Highly Correlated Spatio-Temporal Environments in Wireless Sensor Network Communications
نویسندگان
چکیده
Continuous-monitoring (CM) of natural phenomenon is one of the major streams of applications in wireless sensor networks (WSNs), where aggregation and clustering techniques are beneficial as correlation dominates in both spatial and temporal aspects of sensed phenomenon. Conversely, in Event Driven Reporting (EDR), the efficient transmission of sensitive data related to some predefined alarm cases is of major importance. As such, reporting latency is a more important performance parameter. However, in some applications, the transmission of both CM and EDR data is encouraged or even required. For either CM or EDR applications, system performance can be greatly improved when both the number of packets to be transmitted as well as the packet size is reduced. This is especially true for highly dense sensor networks where many nodes detect the same values for the sensed phenomenon. Building on this, this paper focuses on studying and proposing compression techniques to improve the system performance in terms of energy consumption and reporting latency in both CM and EDR applications. Furthermore, we extend our analysis to hybrid networks where CM and EDR are required simultaneously. Specifically, this paper presents a simple aggregation technique named smart aggregation (SAG) for the CM applications and an event driven scheme named compression cluster scheme in spatial correlated region (CC_SCR). The proposed SAG exploits both spatial and temporal correlations where CC_SCR exploits the spatial correlation of such networks by data compression. Rationalizing the developments is attained by simulations that compare energy efficiency of the proposed SAG with k-hop
منابع مشابه
STCS-GAF: Spatio-Temporal Compressive Sensing in Wireless Sensor Networks- A GAF-Based Approach
Routing and data aggregation are two important techniques for reducing communication cost of wireless sensor networks (WSNs). To minimize communication cost, routing methods can be merged with data aggregation techniques. Compressive sensing (CS) is one of the effective techniques for aggregating network data, which can reduce the cost of communication by reducing the amount of routed data to t...
متن کاملContext-aware Modeling for Spatio-temporal Data Transmitted from a Wireless Body Sensor Network
Context-aware systems must be interoperable and work across different platforms at any time and in any place. Context data collected from wireless body area networks (WBAN) may be heterogeneous and imperfect, which makes their design and implementation difficult. In this research, we introduce a model which takes the dynamic nature of a context-aware system into consideration. This model is con...
متن کاملEvolutionary Computing Assisted Wireless Sensor Network Mining for QoS-Centric and Energy-efficient Routing Protocol
The exponential rise in wireless communication demands and allied applications have revitalized academia-industries to develop more efficient routing protocols. Wireless Sensor Network (WSN) being battery operated network, it often undergoes node death-causing pre-ma...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کاملAn Efficient Cluster Head Selection Algorithm for Wireless Sensor Networks Using Fuzzy Inference Systems
An efficient cluster head selection algorithm in wireless sensor networks is proposed in this paper. The implementation of the proposed algorithm can improve energy which allows the structured representation of a network topology. According to the residual energy, number of the neighbors, and the centrality of each node, the algorithm uses Fuzzy Inference Systems to select cluster head. The alg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014